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We present a detailed analytical study of theA+A→0” diffusion-annihilation process in complex networks.
By means of microscopic arguments, we derive a set of rate equations for the density ofA particles in vertices
of a given degree, valid for any generic degree distribution, and which we solve for uncorrelated networks. For
homogeneous networksswith bounded fluctuationsd, we recover the standard mean-field solution, i.e., a par-
ticle density decreasing as the inverse of time. For heterogeneoussscale-free networksd in the infinite network
size limit, we obtain instead a density decreasing as a power law, with an exponent depending on the degree
distribution. We also analyze the role of finite size effects, showing that any finite scale-free network leads to
the mean-field behavior, with a prefactor depending on the network size. We check our analytical predictions
with extensive numerical simulations on homogeneous networks with Poisson degree distribution and scale-
free networks with different degree exponents.
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I. INTRODUCTION

In the last few years, complex networks have become a
new paradigm for complexity. The merging of graph theory
together with new and classical statistical physics tools has
led to the development of a modern theory of complex net-
works f1,2g, that has found fruitful applications in domains
as diverse as technologysthe physical internetf3g, the world-
wide webf4g, power gridsf5gd, biology sprotein-protein in-
teraction networksf6g, metabolic networksf7g, food webs
f8,9gd, social sciencesssexual contact networksf10g, friend-
ship networks f11g, scientific collaboration networks
f12,13gd, etc.

The statistical analysis of many “real-world” networks
has shown that most of these systems seem to share some
typical features, the most relevant of them being the small-
world propertyf14g and a large connectivity heterogeneity,
reflected in the presence of a scale-free degree distribution
f15g. The small-world property refers to the fact that, in real
networks, the hop distance between two randomly chosen
elements of the system is very small if compared to the total
number of elements. More precisely, ifk,l is the average
distance between two elementssor verticesd, measured as the
smallest number of connectionssor edgesd between any pair
of vertices, andN is the system sizesnumber of verticesd
then usuallyk,l increases logarithmically or more slowly
with N. On the other hand, scale-free networks are charac-
terized by a degree distributionPskd, defined as the probabil-
ity that a randomly selected vertex is connected tok other
verticesshas degreekd, that decreases as a power law,

Pskd , k−g, s1d

whereg is a characteristic degree exponent, usually in the
range 2,g,3. For these values of the degree exponent, the
fluctuations in the degree distribution, measured by the sec-
ond momentkk2l, diverge in the infinite network size limit,
N→`, giving rise to a very heterogeneous connectivity lack-
ing any characteristic degree scale. This behavior is in oppo-

sition to the more classical homogeneous networksf16g,
which have a degree distribution decaying exponentially or
faster and exhibit bounded degree fluctuations.

Given that complex networks are widespread in nature, it
is quite interesting to characterize the effects that their com-
plex topology can have on dynamical processes taking place
on top of these systems. For example, it has been shown that
heterogeneous networks are remarkably weak when faced
with targeted attacks, aimed at destroying the most con-
nected verticesf17,18g, as well as with the propagation of
infective agentsf19,20g. These properties, which are mainly
due to the critical interplay between topology and dynamics
in heterogeneous networks, are otherwise absent in their ho-
mogeneous counterparts.

Epidemic processes, chemical reactions, and many other
dynamic processes, can all be modeled in terms of reaction-
diffusion processesf21g. These are dynamic systems that in-
volve particles of different “species”sAi , i =1, . . . ,nd that dif-
fuse stochastically and interact among them following a
fixed set of reaction rules. One’s interest is usually focused
on the time evolution and steady states of the densities of the
different speciesrAi

std, and the possible presence of critical
phase transitionsf22g. While much is known about the be-
havior of reaction-diffusion processes on regular homoge-
neous lattices, the situation is not so well established in what
respects the possible effects that a heterogeneous connectiv-
ity structure can have on them. In this respect, interesting
work is presented in Ref.f23g, in which a numerical simula-
tion analysis of the diffusion-annihilation processA+A→0”
f24g was performed on scale-free networks. In this reaction-
diffusion process, particles of a single speciesA diffuse on
the vertices of a network and annihilate upon contactswhen
two A particles fall on the same vertexd. In regular lattices of
Euclidean dimensiond, it is well known that the local den-
sity of A particles,rsx,td, is ruled by a Langevin equation
f25g
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]rsx,td
]t

= D¹2rsx,td − 2lrsx,td2 + rsx,tdhsx,td, s2d

wherehsx,td is an uncorrelated Gaussian noise. Dynamical
renormalization group arguments allow one to show that the
average density ofA particles,rstd=krsx,tdl, behaves in the
large time limit as

1

rstd
−

1

r0
, ta, s3d

wherer0 is the initial particle density, and the exponenta
takes the valuesa=d/dc for dødc and a=1 for d.dc,
wheredc=2 is the critical dimension of this process. Ford
.dc one thus recovers the mean-field solution, obtained
from Eq. s2d by setting the diffusion coefficientD and the
noise termhsx,td equal to zero.

The numerical simulations of theA+A→0” diffusion-
annihilation process reported in Ref.f23g, performed on
scale-free networks with general degree exponentg, gener-
ated using the configuration modelf26–29g, led the authors
to conclude that the behavior in time of the average density
of A particles can be approximated by Eq.s3d, where the
asymptotic exponenta is a decreasing function ofg and is
surprisingly larger than 1 forg,3. The authors attributed
this effect to the small-world nature of the networks, and to
the existence of hubssvertices with a large number of con-
nectionsd.

In spite of the potential interest of this result, no theoret-
ical arguments have been proposed so far to back up the
numerical conclusions reached inf23g. In this paper we
tackle this task, by developing a mean-field analysis of the
A+A→0” process. This analysis, made in the continuousk
approximation and inspired by previous work made for epi-
demic spreadingf19,30,31g, results in a set of differential
equations for the density ofA particles in the vertices of
degreek, which are valid for networks with arbitrary degree
distribution Pskd and two-vertex correlationsf32g, deter-
mined by the conditional probabilityPsk8 ukd that a vertex of
degreek is connected to a vertex of degreek8 f33,34g. The
solution of these equations for the particular case of uncor-
related networksfin which the conditional probability
Psk8 ukd is independent ofkg shows that, while homogeneous
networks display a pure mean-field behavior with exponent
a=1, scale-free networks withg,3 in the infinite size limit
exhibit instead an exponent depending on the properties of
the network, i.e.,a=1/sg−2d. Remarkably, this solution in
the infinite size limit shows a crossover for any finite net-
work to a linear behavior 1/rstd, t, with a slope depending
on the network size. Our analytical results are confirmed by
means of large scale numerical simulations for both homo-
geneous and heterogeneous networks.

We have organized the present paper as follows. In Sec. II
we derive, from microscopic considerations, the mean-field
differential equations for theA+A→0” diffusion-annihilation
process in complex random networks with arbitrary degree
distribution and two vertex correlations, quantified by means
of Pskd and Psk8 ukd, respectively. We consider the case of
absence of correlations, finding the density ofA particles for

general homogeneous networks. Section III is devoted to ex-
plicit results for scale-free networks, both in the infinite size
limit and for finite size networks. In Sec. IV, our analytic
results are compared with extensive numerical simulations of
the diffusion-annihilation process running on top of homoge-
neous and heterogeneoussscale-freed networks. Finally, our
conclusions are presented in Sec. V.

II. THE A+A\0” REACTION IN COMPLEX NETWORKS

Let us consider the diffusion-annihilation processA+A
→0” on a complex network of sizeN which is fully defined
by the adjacency matrixaij , which takes the valuesaij =1 if
verticesi and j are connected by an edge, and 0 otherwise.
From a statistical point of view, the network can also be
characterized by its degree distributionPskd and its degree
correlations, given by the conditional probabilityPsk8 ukd.
Each vertex in the network can host at most oneA particle,
and the dynamics of the process is defined as follows: Each
particle jumps at a certain ratel to a randomly chosen near-
est neighbor. If it is empty, the particle fills it, leaving the
first vertex empty. If the nearest neighbor is occupied, the
two particles annihilate, leaving both vertices empty.

In order to study analytically this process in a general
complex network, in which vertices can show large degree
fluctuations, we are forced to consider the partial densities
rkstd, representing the density ofA particles in vertices of
degreek, or, in other words, the probability that a vertex of
degreek contains anA particle at timet f19,30g. From these
partial densities, the total density ofA particles is recovered
from

rstd = o
k

Pskdrkstd. s4d

While it is possible to obtain a rate equation for the den-
sities rkstd by means of intuitive argumentsf19,31g, in the
following we will pursue a more microscopic approach,
which can be generalized to tackle other kinds of problems.
Let nistd be a dichotomous random variable taking values 0
or 1 whenever vertexi is empty or occupied by anA particle,
respectively. Using this formulation, the state of the system
at time t is completely defined by the state vectornstd
=hn1std ,n2std , . . . ,nNstdj. Assuming that the time evolution of
particles follows a Poisson processf21g, the evolution ofnstd
after a time incrementdt can be expressed as

nist + dtd = nistdhsdtd + f1 − nistdgjsdtd, s5d

where hsdtd and jsdtd are dichotomous random variables
taking values

hsdtd = 50 with probability l dtF1 + o
j

aijnjstd
kj

G ,

1 otherwise,
6

s6d

and
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jsdtd = 51 with probability l dto
j

aijnjstd
kj

,

0 otherwise,
6 s7d

whereaij is the adjacency matrix andl is the jumping rate
which, without loss of generality, we set equal to 1. The first
term in Eq.s5d stands for an event in which vertexi is oc-
cupied by a particle and, during the time intervalst ,t+dtd, it
becomes empty, either because the particle in it decides to
move to another vertex or because a particle in a nearest
neighbor of i decides to jump toi, annihilating thus both
particles. The second term corresponds to the case in which
vertex i is empty and a particle in a neighbor vertex ofi
decides to move to that vertex.1 Taking the average of Eq.
s5d, we obtain

knist + dtdunstdl = nistd − Fnistd − f1 − 2nistdgo
j

aijnjstd
kj

Gdt,

s8d

an equation that describes the average evolution of the sys-
tem, conditioned to the knowledge of its state at the previous
time step. Then, after multiplying Eq.s8d by the probability
to find the system at staten at time t, and summing for all
possible configurations, we are led to

dristd
dt

= − ristd + o
j

aij
1

kj
fr jstd − 2ri jstdg, s9d

where we have introduced the notationristd;knistdl and
ri jstd;knistdnjstdl.

The derivation presented so far is exact. To proceed fur-
ther, we assume that vertices with the same degree are sta-
tistically equivalentf31g. That is,

ristd ; rkstd ∀ i P Vskd, s10d

ri jstd ; rkk8std ∀ i P Vskd, j P Vsk8d, s11d

whereVskd is the set of vertices of degreek. Thus, by sum-
ming Eq.s9d for all vertices of degreek and dividing by the
number of vertices with this degree,Nk, we can write, after
some formal manipulations,

drkstd
dt

= − rkstd + o
k8

rk8std − 2rkk8std

k8

1

Nk
o

iPVskd
o

jPVsk8d

aij .

s12d

If all the vertices with the same degree are statistically
equivalent, we can setf31g

1

Nk
o

iPVskd
o

jPVsk8d

aij = kPsk8ukd. s13d

Finally, by assuming the mean-field approximationrkk8std
.rkstdrk8std, the rate equation for the densityrkstd can be
written as

drkstd
dt

= − rkstd + kf1 − 2rkstdgo
k8

Psk8ukd
k8

rk8std. s14d

In the case of networks with general degree correlations,
the solution of Eq.s14d depends on the nature of the condi-
tional probability Psk8 ukd and can be a rather demanding
taskf35g. Therefore, in the rest of this paper we will restrict
ourselves to the case of uncorrelated networks, in which the
conditional probability takes the simple formPsk8 ukd
=k8Psk8d / kkl f31g. For this class of networks, the rate equa-
tion Eq. s14d is simplified to the form

drkstd
dt

= − rkstd +
k

kkl
f1 − 2rkstdgrstd, s15d

whererstd is the total density ofA particles. We can obtain a
differential equation for this last quantity by multiplying Eq.
s15d by Pskd and summing overk, namely,

drstd
dt

= − 2rstdQstd, s16d

where

Qstd =
1

kklok

kPskdrkstd. s17d

In order to solve Eq.s16d, we perform aquasistaticap-
proximation in the rate equation Eq.s15d. From the mean-
field solution of theA+A→0” process, we expectrstd to be a
decreasing function with a power-law-like behavior. In this
case, for large enough times, the time derivative ofrstd will
be much smaller than the density proper. Extending this ar-
gument to the partial densitiesrkstd, at large times we can
neglect the left-hand-side term in Eq.s15d, and solve for
rkstd as a function of the density, obtaining

rkstd =
krstd/kkl

1 + 2krstd/kkl
. s18d

Substituting this approximation into the expression forQstd,
we get

Qstd =
rstd
kkl2o

k

k2Pskd
1 + 2krstd/kkl

. s19d

Inserting this last expression into Eq.s16d, we obtain as a
final equation for the density ofA particles

drstd
dt

= − 2
rstd2

kkl2 o
k

k2Pskd
1 + 2krstd/kkl

. s20d

The solution of the approximate equation Eq.s20d will
depend on the particular form of the degree distribution. The
task becomes, however, quite simple for the class of homo-

1Notice that the random variableshsdtd andjsdtd are not indepen-
dent, since both involve some common random movements. This
fact, however, does not affect our further development.
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geneous networks. In this case, the degree distribution de-
creases so quickly that all its moments are finite. So, for
small rstd we can perform a Taylor expansion of the right-
hand side of Eq.s20d, obtaining at lowest order

drstd
dt

. − 2
kk2l
kkl2rstd2 + 4

kk3l
kkl3rstd3, s21d

whose solution at large times yields

1

rstd
−

1

r0
.

2kk2l
kkl2 t, s22d

r0 being the initial density ofA particles. This corresponds to
the pure mean-field linear behavior, with a finite prefactor
depending on the second moment of the degree distribution.

Equations18d can help us to understand how this process
will operate in heterogeneous networks. Indeed, for any
given time t* , the partial density of vertices with degree
larger thankkl /2rst*d is essentially constant up to timet* ,
that is,rkstd.1/2 for k. kkl /2rst*d andt, t* . The reason is
that vertices with high degreeshubsd are more easily reached
by particles than those with small degree and with high prob-
ability they will be surrounded by someA particle. Then, as
soon as one nearby particle decides to move to the hub, both
particles disappear and another nearby particle will replace
the original one in the hub, keeping then the density con-
stant, which is clearly set to 1/2. Therefore, hubs act as
drains through which particles vanish. Besides, this process
happens in a hierarchical way in time, that is, the partial
density of small degree vertices decreases first, whereas the
most connected vertices are the last to hold particles. This
reasoning allows us to anticipate that the resulting dynamics
will strongly depend on the number of high degree vertices
of the network and, consequently, on the degree distribution.

III. SCALE-FREE NETWORKS

For heterogenous networks with a diverging second mo-
ment, as in the case of scale-free networks, we have to con-
sider more carefully the solution of Eq.s20d. Let us focus on
generalized uncorrelated scale-free networks in the infinite
size limit, which are completely determined by the normal-
ized degree distribution

Pskd = sg − 1dmg−1k−g, s23d

where 2,g,3 is the degree exponent,m is the minimum
degree in the network, and we are approximatingk as a con-
tinuous variable. The average degree is thuskkl=msg
−1d / sg−2d. For a scale-free network in the limitN→`, Eq.
s20d can be written as

drstd
dt

= − 2rstd2sg − 1dmg−1

kkl2 E
m

` k2−g

1 + 2krstd/kkl
dk

= − rstdF„1,g − 2,g − 1,−sg − 1d/2sg − 2drstd…,
s24d

whereF is the Gauss hypergeometric functionf36g. There-
fore, the density as a function of time can be implicitly ex-
pressed in terms of the integral

t =E
r0

−1

rstd−1 dz

zF„1,g − 2,g − 1,−sg − 1dz/2sg − 2d…
. s25d

For very large times and small densities, we can use the
asymptotic expansion of the Gauss hypergeometric function
Fs1,g−2,g−1,−zd,z2−g, z→`, to obtain the scaling be-
havior of the density with time,

1

rstd
, t1/sg−2d. s26d

This same result can be derived in a more intuitive fashion
starting from the argument presented at the end of the previ-
ous section. If hubs act as drains of particles, then the rate of
change in the total density of particles will be proportional to
the density of hubs. More precisely, identifying the relevant
hubs at timet as those vertices with degree larger than
kkl /2rstd, we have that

drstd
dt

, E
kkl/2rstd

`

Pskddk, rstdg−1, s27d

from which we obtain the same trend given by Eq.s26d. As
g decreases the probability of having high degree vertices as
drains in the network increases. From Eq.s26d we see as well
that when this happens, the decrease in the density becomes
faster. Therefore, the larger is the degree of the hubs in the
network, the faster is the process of annihilation.

We can obtain an exact solution forrstd in scale-free net-
works with degree exponentg=3. In this case, we have
Pskd=2m2k−3 and kkl=2m. The differential equation for the
particle density reads now

drstd
dt

= − rstd2E
m

` k−1

1 + krstd/m
dk= rstd2 lnS1 +

1

rstd
D ,

s28d

whose solution is

t =E
r0

−1

rstd−1 dz

lns1 + zd
= Li„1 + rstd−1

… − Lis1 + r0
−1d, s29d

whereLi is the logarithmic integral functionf36g. For small
rstd, we can exploit the asymptotic expansion of the logarith-
mic integral functionLiszd,z/ ln z, z→`, to obtain

1

rstd
, t ln t. s30d

That is, in the infinite network size limit, the particle density
of a scale-free network withg=3 follows the same decay as
the mean-field solution, with a logarithmic correction.

The conclusion of this analysis is that the particle density
in the A+A→0” process in a infinite size scale-free network
with degree exponentg follows the asymptotic form at large
times

1

rstd
, tasgdsln tdbsgd, s31d

with characteristic exponents
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asgd = H1/sg − 2d, 2 , g , 3,

1, g ù 3,
J s32d

bsgd = 50, 2 , g , 3,

1, g = 3,

0, g . 3.
6 s33d

The results forg.3 are a natural consequence of the lack of
degree fluctuationsskk2l,`d in this kind of scale-free net-
work.

The analytical exponents determined above, however, are
strongly affected by finite size effects. Indeed, for a power-
law degree distribution, the largest weight in the sum in Eq.
s20d is carried by the largek values. If the network is com-
posed of a finite number of verticesN, as always happens in
numerical simulations, it has a cutoff or maximum degree
kcsNd, which is usually a function of the network sizef37g.
Thus, there exists a crossover timetc, defined by

2kcsNdrstcd
kkl

! 1, s34d

such that, fort. tc the particle density is so small that we can
approximate

Qstd <
rstd
kkl2o

k

k2Pskd = rstd
kk2l
kkl2 . s35d

In this time regime, we will observe an effective linear be-
havior for the inverse particle density

1

rstd
,

2kk2l
kkl2 t, s36d

whose effective slope depends on the network size as

kk2l = o
k=m

kcsNd

k2Pskd , kcsNd3−g. s37d

That is, in finite size scale-free networks, the density ofA
particles at very large times has the same behavior as in
homogeneous networks, i.e., 1 /rstd is linear in t, but now
with a slope that depends on the network sizeN. Thus, ex-
ponents larger than 1, given by Eq.s32d, can only be numeri-
cally observed as transients in very large networks.

IV. NUMERICAL SIMULATIONS

As a check for the analytic predictions developed in the
previous sections, we have performed extensive numerical
simulations of the diffusion-annihilation process on top of
different network models, both homogeneous and heteroge-
neous. The simulations are implemented using a sequential
updating schemef22g. An initial fractionr0 of vertices in the
networks is randomly chosen and occupied by anA particle.
At time t in the simulation, a vertex is randomly chosen
among then vertices that host anA particle at that time. One
of its neighbors is selected also at random. If it is empty, the
particle moves and occupies it. If it contains a particle, this is
annihilated with the one in the first vertex, both vertices be-

coming empty, and the number of occupied vertices is up-
datedn→n−2. In both cases, time is becoming updated as
t→ t+1/n, wheren is the total number of particles at the
beginning of the simulation step. In all the simulations pre-
sented in this section, we set the initial particle densityr0
=0.5.

A. Homogeneous networks

The class of homogeneous networks refers to networks
with a degree distribution peaked at an average valuekkl and
decaying exponentially or faster fork@ kkl andk! kkl. Typi-
cal examples of such networks are the Erdös and Rényi
model f38g and the small-world model proposed by Watts
and StrogatzsWSd f14g. We will focus on the latter in order
to perform computer simulations. The WS model is defined
as followsf14,39g. The starting point is a ring withN verti-
ces, in which every vertex is symmetrically connected to its
2m nearest neighbors. Then, for every vertex, each edge con-
nected to a clockwise neighbor is rewired to a randomly
chosen vertex with probabilityp, and preserved with prob-
ability 1−p. This procedure generates a graph with a degree
distribution that decays faster than exponentially for largek,
and average degreekkl=2m. We will consider the WS model
with p=1, that is, in which all edges have been rewired. In
this limit, the degree distribution of the WS network takes
the form f39g

Pskd =
mk−m

sk − md!
e−m. s38d

Therefore, all its momentskknl are finite for any value ofn,
and we should expect Eq.s22d to provide a good approxima-
tion for the dynamics of theA+A→0” process forrstd→0.

In order to check this fact, we have carried out large-scale
numerical simulations of theA+A→0” reaction on WS net-
works with p=1 and minimum degreem=3, which corre-
sponds to an average degreekkl=6. Simulations were per-
formed on graphs of sizeN=106, averaging over 1000
reaction processes over ten different realizations of the ran-
dom network. In Fig. 1 we show the total density ofA par-
ticles as a function of time. As we can observe, the inverse
particle density follows quite precisely a linear behavior with
time, as predicted in Eq.s22d.

B. Heterogeneous networks: The Barabási-Albert model

The Barabási-AlbertsBAd graph was introduced as the
first growing network model capable of producing as an
emerging property a power-law degree distributionf15g. This
model is based on the preferential attachment paradigm, a
rather intuitive mechanism in which new individuals tend to
develop more easily connections with already well connected
individuals. The model is defined as follows. We start from a
small numberm0 of vertices, and at each time step, a new
vertex is introduced, withm edges that are connected to old
verticesi with probability
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Pskid =
ki

o j
kj

, s39d

whereki is the degree of theith vertex. After iterating this
procedure a large number of times, we obtain a network
composed ofN vertices, minimum degreem, and average
degreekkl=2m, with a degree distributionPskd=2m3k−3 and
almost vanishing degree correlationsf34g. In the results pre-
sented here we consider the parametersm0=5 andm=2, cor-
responding to an average degreekkl=4. We have checked
that numerical simulation results are almost independent of
the value ofm, for mù2, as predicted by our theoretical
formalism.2 Simulations were performed on networks of size
N=105 andN=106, averaging over 1000 runs in ten different
network samples.

A first issue that we have explored in this network is the
validity of the quasistationary approximation made to obtain
Eq. s18d. If this approximation is valid, we should observe
that the quantity

kS 1

rkstd
− 2D =

kkl
rstd

s40d

is independent ofk. We have performed this check in Fig. 2.
As we can observe, the curves collapse quite nicely fort
larger thatt0.10. Therefore, we should expect that the re-
sults obtained from the approximation in Eq.s20d will be
valid above this characteristic time.

In Fig. 3 we represent the inverse particle density as a
function of time. In this plot we observe that, except for very
early times, the initial time dependence is very accurately
described by the analytic solution Eq.s29d, which can be
approximately described by a linear behavior with a logarith-
mic correction, 1/rstd, t ln t sfull lined. At larger times, the

function 1/rstd crosses over to a linear dependencesdashed
lined, showing the onset of finite size effects. The poor agree-
ment at early times should be attributed to the approximation
in Eq. s20d, which is valid only for times larger thant0
.10.

C. Heterogeneous networks: The uncorrelated configuration
model

The construction of uncorrelated scale-free networks with
arbitrary degree exponent is a nontrivial issue. The lack of
correlations is not a negligible requirement at all, in order to
check our predictions. Indeed, we expect that the dynamics
has an extremely different behavior when correlations are
present, as observed in other casesf19,30–32g. Traditionally,
scale-free networks with arbitrary degree exponent were gen-
erated using the configuration modelsCMd f26–29g, in
which, starting from a degree sequence extracted according
to the desired degree distribution, edges are randomly cre-

2The valuem=1 is, however, particular in this sense, since it
yields treelike networks. We defer the study of this case to a future
publication.

FIG. 1. Inverse average particle densityrstd as a function of
time for the A+A→0” process in WS networks. The dashed line
corresponds to a behavior 1/rstd, t.

FIG. 2. Check of Eq.s40d in BA networks. The networks have
sizeN=105.

FIG. 3. Inverse average particle densityrstd as a function of
time for theA+A→0” process in BA networks. The full line is the
analytic solution Eq.s29d; the dashed line corresponds to the finite
size behavior 1/rstd, t.
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ated between vertices, respecting the preassigned degrees. It
has been shown, however, that for scale-free distributions
with diverging second moment, and in the absence of self-
connectionssa vertex joined to itselfd and multiple connec-
tions stwo vertices connected by more than one edged, this
procedure generates in fact degree correlationsf40,41g. The
origin of this phenomenon can be traced back to the effects
of the cutoff or maximum expected degreekcsNd, which must
scale at most asN1/2 in order to allow for a full random
uncorrelated edge assignmentf42g.

The uncorrelated configuration modelsUCMd f43g has
been recently proposed in order to solve this question. This is
defined as follows.s1d Assign to each vertexi in a set ofN
initially disconnected vertices a degreeki, extracted from the
probability distributionPskd,k−g, and subject to the con-
straintsmøki øN1/2 and oiki even. s2d Construct the net-
work by randomly connecting the vertices withoiki /2 edges,
respecting the preassigned degrees and avoiding multiple and
self-connections. Using this algorithm, it is possible to create
scale-free networks whose cutoff scales askcsNd,N1/2 for
any degree exponentg, and which are completely uncorre-
lated. The results presented below were obtained from simu-
lations performed on networks generated from the UCM al-
gorithm with minimum degreem=2 and sizes ranging from
N=105 to N=106. Averages were performed over 1000 runs
in ten different network samples. We restrict ourselves to the
casem=2 in order to generate a fully connected network
with probability onef28,44g.

In Fig. 4 we plot the inverse particle density from com-
puter simulations in networks with different degree exponent
g. From this plot we observe that, at the initial time regime,
the growth of this function is faster for smaller values ofg,
in agreement with the theoretical prediction Eq.s26d. At
larger times, on the other hand, finite size effects take over,
and we observe again a linear regimescompare the trend
with the reference dashed line in the figured. For g,3, how-
ever, we cannot compare directly with the full analytic pre-
diction Eq.s26d, as we did for the BA model. The reason is

the following. From Eq.s34d, we have that the density at the
crossover time scales as

rstcd , kcsNd−1. s41d

Then, from Eq.s26d, we can estimate

tc , kcsNdg−2. s42d

That is, the crossover timetc diminishes with decreasingg. It
turns out that, even forg=2.5, tc is so small and the range of
the transient regime 1/rstd, t1/sg−2d so limited, that we can-
not accurately recover the theoretical exponent. Thus, only
the finite size effects, with their associated linear behavior,
are apparent. System sizes larger than those available for our
present computer resources should make visible the cross-
over phenomena.

Finally, we have checked the slope dependence of the
linear behavior given by the finite size effects. According to
Eqs. s36d and s37d, we should observe, for a fixed degree
exponent, a slope that grows with the system size as
kcsNd3−g,Ns3−gd/2, where we have used the scaling of the
cutoff given by the UCM algorithm. We have analyzed this
point in Fig. 5. For a degree exponentg=2.5, we observe
that the curves for increasing values ofN show a correspond-
ingly increasing of the slope in the final linear region. We
have estimated this slope by performing a linear fitting to the
whole curvesinset in Fig. 5d. This slope increases approxi-
mately asN1/4, in very good agreement with our theoretical
predictions.

It is noteworthy that these finite size effects, so remark-
able in the simulations presented in this section, are, how-
ever, not evident in the numerical work developed in Ref.
f23g. The reason of this fact could be that the simulations in
f23g were performed in networks generated with the CM
algorithm. These networks, as we have discussed above, ex-
hibit some degree of correlationsf40,41,43g, and therefore
could be outside of the regime of validity of the analytical

FIG. 4. Inverse average particle densityrstd as a function of
time for theA+A→x process in uncorrelated scale-free networks
with different degree exponents. The dashed line corresponds to the
finite size behavior 1/rstd, t.

FIG. 5. Inverse average particle densityrstd as a function of
time for theA+A→x process in uncorrelated scale-free networks
with degree exponentg=2.5 and different network sizes. Inset:
slope in the linear regime as a function ofN1/4. The good linear
behavior validates the finite size solution in Eq.s36d.
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calculations we have presented here. On the other hand, in
the case ofg=3, both the CM and UCM generate networks
without noticeable correlations and, therefore, one should ex-
pect better agreement between our results and those pre-
sented in Ref.f23g. However, in this case, finite size effects
manifest themselves as a crossover between a linear function
of time with logarithmic corrections and a purely linear func-
tion of time. The difference between these two regimes is so
subtle that it comes as no surprise that this crossover phe-
nomena went unnoticed inf23g, especially in the absence of
a theory to predict it.

V. CONCLUSIONS

In this paper we have presented a detailed analytical study
of the A+A→x diffusion-annihilation process in complex
networksf23g. For uncorrelated homogeneous networks with
bounded degree fluctuations, we recover a behavior compat-
ible with the standard mean-field solution of the process, that
is, the inverse particle density grows linearly with time,
1/rstd, t, with a constant prefactor. In the case of uncorre-
lated heterogeneous networks, characterized by a scale-free
degree distribution, we observe instead that, in the infinite
network size limit N→`, the inverse particle density in-
creases as a power law with time, 1/rstd, tasgd, with an ex-
ponent larger than 1 and that depends on the level of hetero-
geneity of the network, i.e.,asgd=1/sg−2d for g,3. For
g=3, a linear growth with logarithmic corrections sets in,
while for g.3 we recover again the mean-field solution
typical of homogeneous networks. In the case of scale-free
networks, we have also analyzed the effects of a finite net-

work size in this dynamical process. For any value ofgø3,
we have shown that, at large times, the inverse particle den-
sity in a finite network crosses over to a linear behavior, with
a slope that is an increasing function of the network sizeN,
i.e., 1 /rstd,Ns3−gd/2t. In order to check our results, we have
performed extensive numerical simulations on both homoge-
neous and heterogeneous networks, obtaining a convincing
evidence for our predictions.

An interesting conclusion that can be extracted of the
present work is the very strong incidence that finite size ef-
fects can have on dynamical systems on top of scale-free
networks. While these size effects have been already dis-
cussed in the context of epidemic spreadingf45g, the A+A
→x process analyzed here provides a further example, in
which analytical results and numerical simulations show a
striking agreement.
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