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We present a detailed analytical study of the A— 0 diffusion-annihilation process in complex networks.
By means of microscopic arguments, we derive a set of rate equations for the desputicles in vertices
of a given degree, valid for any generic degree distribution, and which we solve for uncorrelated networks. For
homogeneous networKsvith bounded fluctuationswe recover the standard mean-field solution, i.e., a par-
ticle density decreasing as the inverse of time. For heterogeriscalg-free networlsn the infinite network
size limit, we obtain instead a density decreasing as a power law, with an exponent depending on the degree
distribution. We also analyze the role of finite size effects, showing that any finite scale-free network leads to
the mean-field behavior, with a prefactor depending on the network size. We check our analytical predictions
with extensive numerical simulations on homogeneous networks with Poisson degree distribution and scale-
free networks with different degree exponents.

DOI: 10.1103/PhysRevE.71.056104 PACS nuni®er89.75-k, 87.23.Ge, 05.70.Ln

I. INTRODUCTION sition to the more classical homogeneous netwdrks],

which have a degree distribution decaying exponentially or
In the last few years, complex networks have become ?aster and exhibitgbounded degree quc%/ua?ionsp y

new paradigm for complexity. The merging of graph theory Gi h | K ” di .
together with new and classical statistical physics tools has ©'Ven that complex networks are widespread in nature, it
led to the development of a modern theory of complex netlS duite interesting to characterize the effects that their com-

works[1,2], that has found fruitful applications in domains Pl€x topology can have on dynamical processes taking place
as diverse as technologghe physical interndi3], the world- 0N top of these systems. For example, it has been shown that
wide web[4], power grids[5]), biology (protein-protein in- heterogeneous networks are remarkably weak when faced
teraction networkg6], metabolic network$7], food webs With targeted attacks, aimed at destroying the most con-
[8,9]), social sciencetsexual contact networkd.0], friend-  nected vertice$17,18,, as well as with the propagation of
ship networks [11], scientific collaboration networks infective agent§19,20. These properties, which are mainly
[12,13), etc. due to the critical interplay between topology and dynamics
The statistical analysis of many “real-world” networks in heterogeneous networks, are otherwise absent in their ho-
has shown that most of these systems seem to share som@geneous counterparts.
typical features, the most relevant of them being the small- Epidemic processes, chemical reactions, and many other
world property[14] and a large connectivity heterogeneity, dynamic processes, can all be modeled in terms of reaction-
reflected in the presence of a scale-free degree distributiogiffusion processef21]. These are dynamic systems that in-
[15]. The small-world_ property refers to the fact that, in realyg|ye particles of different “speciesA;,i=1, ... n) that dif-
networks, the hop distance between two randomly chosef,se stochastically and interact among them following a
elements of the system is very small if compared to the totafiy oy set of reaction rules. One’s interest is usually focused
ngmber of elements. More preC|se!y, (i) is the average on the time evolution and steady states of the densities of the
distance between two elemerits vertices, measured as the jtorent speciep, (1), and the possible presence of critical
smallest number of connectiofsr edges between any pair phase transitionf22]. While much is known about the be-

f verti ndN is th m sizénumber of verti : . e
of vertices, andN is the system sizénumber of vertices havior of reaction-diffusion processes on regular homoge-

then usually(¢) increases logarithmically or more slowly . L . .
: neous lattices, the situation is not so well established in what
with N. On the other hand, scale-free networks are charac-

terized by a degree distributid?(k), defined as the probabil- respects the possible effects that a he.terogeneou's conne_ctiv-
ity that a randomly selected vertex is connected tother ity structure can have on them. In this respect, interesting

vertices(has degred), that decreases as a power law work is presented in Ref23], in which a numerical simula-
' ' tion analysis of the diffusion-annihilation procedsA— 0

~ k™, was performed on scale-free networks. In this reaction-
P(k) ~ k™ (1) [24] f d le-f ks. In thi [
diffusion process, particles of a single specfesliffuse on

he vertices of a network and annihilate upon contadten
dwo A particles fall on the same vertexn regular lattices of
Euclidean dimension, it is well known that the local den-
k_sity of A particles,p(x,t), is ruled by a Langevin equation

where y is a characteristic degree exponent, usually in th
range & y<3. For these values of the degree exponent, th
fluctuations in the degree distribution, measured by the se
ond momentk?), diverge in the infinite network size limit,
N— o0, giving rise to a very heterogeneous connectivity lac
ing any characteristic degree scale. This behavior is in oppc{-25]
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apxt) 5 general homogeneous networks. Section 11l is devoted to ex-
Ta DVp(x,t) =2 p(x, )"+ p(x,O7(Xx.t),  (2)  plicit results for scale-free networks, both in the infinite size
limit and for finite size networks. In Sec. IV, our analytic
where 7(x,t) is an uncorrelated Gaussian noise. Dynamicakesults are compared with extensive numerical simulations of
renormalization group arguments allow one to show that théhe diffusion-annihilation process running on top of homoge-
average density oA particles,p(t)={p(x,t)), behaves in the neous and heterogeneo(ssale-fre¢ networks. Finally, our
large time limit as conclusions are presented in Sec. V.

—_— - i ~ t (3) II. THE A+A—0 REACTION IN COMPLEX NETWORKS

Let us consider the diffusion-annihilation processA
where po is the initial particle density, and the exponeat ¢ on a complex network of sizd which is fully defined
takes the valuesy=d/d; for d<d; and a=1 for d>d;, by the adjacency matrig;, which takes the values;=1 if
whered;=2 is the critical dimension of this process. Fbr  verticesi andj are connected by an edge, and 0 otherwise.
>d. one thus recovers the mean-field solution, obtainedtrom a statistical point of view, the network can also be
from Eq. (2) by setting the diffusion coefficierld and the  characterized by its degree distributiitk) and its degree
noise termz(x,t) equal to zero. o correlations, given by the conditional probabiliB(k’ |k).

The numerical simulations of th&+A—0 diffusion-  Each vertex in the network can host at most énparticle,
annihilation process reported in Re23], performed on  and the dynamics of the process is defined as follows: Each
scale-free networks with general degree exponergener-  particle jumps at a certain rateto a randomly chosen near-
ated using the configuration mod@6-29, led the authors est neighbor. If it is empty, the particle fills it, leaving the
to conclude that the behaV|or_|n time of the average densityi st vertex empty. If the nearest neighbor is occupied, the
of A particles can be approximated by EG), where the  twg particles annihilate, leaving both vertices empty.
asymptotic exponent is a decreasing function of and is In order to study analytically this process in a general
surprisingly larger than 1 fory<<3. The authors attributed complex network, in which vertices can show large degree
this effect to the small-world nature of the networks, and tofjyctuations, we are forced to consider the partial densities
the existence of hubgsertices with a large number of con- pi(1), representing the density @ particles in vertices of
nections. o _ degreek, or, in other words, the probability that a vertex of

In spite of the potential interest of this result, no theoret'degreek contains anA particle at timet [19,30). From these

ical arguments have been proposed so far to back up thearial densities, the total density Afparticles is recovered
numerical conclusions reached [@3]. In this paper we {om

tackle this task, by developing a mean-field analysis of the
A+A— 0 process. This analysis, made in the continukus _
approximation and inspired by previous work made for epi- p(v) = % PK)p(). )
demic spreadindg19,30,3], results in a set of differential
equations for the density oA particles in the vertices of While it is possible to obtain a rate equation for the den-
degreek, which are valid for networks with arbitrary degree sities p,(t) by means of intuitive argumen{d9,31], in the
distribution P(k) and two-vertex correlation§32], deter- following we will pursue a more microscopic approach,
mined by the conditional probabiliti?(k’ |k) that a vertex of ~ which can be generalized to tackle other kinds of problems.
degreek is connected to a vertex of degrke[33,34. The Letni(t) be a dichotomous random variable taking values 0
solution of these equations for the particular case of uncorer 1 whenever vertekis empty or occupied by ah particle,
related networks[in which the conditional probability respectively. Using this formulation, the state of the system
P(k’|k) is independent ok] shows that, while homogeneous at time t is completely defined by the state vectoft)
networks display a pure mean-field behavior with exponent{ny(t),ny(t), ... ,ny(t)}. Assuming that the time evolution of
a=1, scale-free networks witli< 3 in the infinite size limit  particles follows a Poisson procd&d], the evolution ofn(t)
exhibit instead an exponent depending on the properties ddfter a time incremendt can be expressed as
the network, i.e.a@=1/(y—-2). Remarkably, this solution in
the infinite size limit shows a crossover for any finite net- n(t + dt) = n,(t) p(dt) +[1 —n;(t)]&(d), (5)
work to a linear behavior Jo(t) ~t, with a slope depending
on the network size. Our analytical results are confirmed byvhere »(dt) and &(dt) are dichotomous random variables
means of large scale numerical simulations for both homotaking values
geneous and heterogeneous networks.

We have organized the present paper as follows. In Sec. Il
we derive, from microscopic considerations, the mean-field n(dt) =
differential equations for th&+A— 0 diffusion-annihilation )
process in complex random networks with arbitrary degree 1 otherwise,
distribution and two vertex correlations, quantified by means (6)
of P(k) and P(k’ |k), respectively. We consider the case of
absence of correlations, finding the densityAgbarticles for  and

(it
0 with probability A dtll > @%Q} ,
j j
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N (t 1
1 with probability x dt3, 3. =3 S a=kPKK. (13)
&(dt) = ;K (7) Nii 90 | oy

0 otherwise, Finally, by assuming the mean-field approximatipg(t)

whereg;; is the adjacency matrix ank is the jumping rate = pdDpie (1), the rate equation for the densipy(t) can be

which, without loss of generality, we set equal to 1. The firstWritten as

term in Eq.(5) stands for an event in which vertéxs oc- dpy(t) P(k'[K)

cupied by a particle and, during the time intergk+dt), it T ~ ) +K1-2p(0)]> Tpk’(t)- (14)
kl

becomes empty, either because the particle in it decides to

move to another vertex or because a particle in a nearest |n the case of networks with general degree correlations,
neighbor ofi decides to jump td, annihilating thus both the solution of Eq(14) depends on the nature of the condi-
particles. The second term corresponds to the case in whigfpnal probability P(k’ |k) and can be a rather demanding
vertexi is empty and a partg:le in a neighbor vertexiof  {55k[35]. Therefore, in the rest of this paper we will restrict
decides to move to that vertexTaking the average of EQ. qyrselves to the case of uncorrelated networks, in which the
(5), we obtain conditional probability takes the simple fornP(k’|k)
® =k’P(k")/{ky [31]. For this class of networks, the rate equa-
a1n . . . e
(mi(t+ do|n() = ni(t) - | ni(t) - [1 - 201> _J_kJ_ dt, tion Eq. (14) is simplified to the form
i j d
() K
®) el U R Bt XC) R

an equation that describes the average evolution of the sygherep(t) is the total density oA particles. We can obtain a
tem, conditioned to the knowledge of its state at the previouslifferential equation for this last quantity by multiplying Eq.
time step. Then, after multiplying E@8) by the probability  (15) by P(k) and summing ovek, namely,

to find the system at state at timet, and summing for all dp(t)

possible configurations, we are led to ot o 20(H)O(t), (16)
t
dp;(t) 1
L Emn0r S alan-200], (@) Where
i i 1
(1) = 7> 2 kPK)p (D). (17)

where we have introduced the notatigi(t)=(n;(t)) and LU
pij (O = (m(t)n; (1)). In order to solve Eq(16), we perform aquasistaticap-

The derivation presented so far is exact. To proceed furproximation in the rate equation E¢L5). From the mean-
ther, we assume that vertices with the same degree are sfeld solution of theA+A— 0 process, we expeg(t) to be a

tistically equivalen{31]. That is, decreasing function with a power-law-like behavior. In this
' case, for large enough times, the time derivative@f will
pi)=pt) O ieVk), (100 be much smaller than the density proper. Extending this ar-

gument to the partial densitigg(t), at large times we can
neglect the left-hand-side term in E¢L5), and solve for

i) =pac® DieVk), jeVk), (11 p(t) as a function of the density, obtaining

whereV(K) is the set of vertices of degrée Thus, by sum- kp()/{k)

ming Eq.(9) for all vertices of degre& and dividing by the P = 1+ 2kp(t)/(k) (18)
number of vertices with this degrel,, we can write, after o ) o ]
some formal manipulations Substituting this approximation into the expression@t),
we get
dpy(t) pir(t) = 2pe () 1 (t) K2P(K)
ot TTAOPET B S ey 00 = (32 T 9
K’ kiEV(k)jEV(kf) < > k P(t)< >

(12 Inserting this last expression into E(L6), we obtain as a
final equation for the density &k particles
If all the vertices with the same degree are statistically 2 2
equivalent, we can sé81] dp(®) _ _p(t) D k°P(k) _
dt (K2 % 1+ Zp(D)/(k)

(20)

!Notice that the random variablegdt) and£(dt) are not indepen- The solution of the approximate equation Eg0) will
dent, since both involve some common random movements. Thidepend on the particular form of the degree distribution. The
fact, however, does not affect our further development. task becomes, however, quite simple for the class of homo-
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geneous networks. In this case, the degree distribution de- pn~? dz (25
creases so quickly that all its moments are finite. So, for _f_ oA “on - (25
small p(t) we can perform a Taylor expansion of the right- oy ZRHly=2,y=1-(y-122(y-2)
hand side of Eq(20), obtaining at lowest order For very large times and small densities, we can use the
dp(t) 3 % asymptotic expansion of the Gauss hypergeometric function
AU = 2.—=p(H)2+ 4% p(1)°, (21) F(1,y-2,y-1,-2~2*7, z—x, to obtain the scaling be-
dt (ky (k) havior of the density with time,
whose solution at large times vyields 1
— ~ 02, (26)
11 23 p(t)
- == T, (22)
p) po (K This same result can be derived in a more intuitive fashion

po being the initial density oA particles. This corresponds to Starting from the argument presented at the end of the previ-

the pure mean-field linear behavior, with a finite prefactorous section. If hubs act as drains of particles, then the rate of

depending on the second moment of the degree distributioffhange in the total density of particles will be proportional to
Equation(18) can help us to understand how this processhe density of hubs. More precisely, identifying the relevant

will operate in heterogeneous networks. Indeed, for anylubs at timet as those vertices with degree larger than

given timet’, the partial density of vertices with degree (K)/2p(t), we have that

larger than(k)/2p(t") is essentially constant up to tinté, dolt) -

that is, py(t) = 1/2 fork>(k)/2p(t") andt<t". The reason is ALY J P(k)dk ~ p(t)", (27)

that vertices with high degrd@ubs are more easily reached dt (Ky2p(t)

by_particles than those with small degree an_d with high probs,om which we obtain the same trend given by E2f). As

ability they will be surrounded by som particle. Then, as ., gecreases the probability of having high degree vertices as

soon as one nearby particle decides to move to the hub, bog}ains in the network increases. From E2p) we see as well

particles disappear and another nearby particle will replacg,,t when this happens, the decrease in the density becomes

the original one in the hub, keeping then the density contagier. Therefore, the larger is the degree of the hubs in the
stant, which is clearly set to 1/2. Therefore, hubs act ag,etwork. the faster is the process of annihilation.

drains through which particles vanish. Besides, this process \we can obtain an exact solution foft) in scale-free net-

happens in a hierarchical way in time, that is, the partiakNorkS with degree exponent=3. In this case, we have

density of small degree vertices decreases first, whereas tlﬁk):Zmzk* and(k)=2m. The differential equation for the
most connected vertices are the last to hold particles. Thiéarticle density reads ndw

reasoning allows us to anticipate that the resulting dynamic

will strongly depend on the number of high degree vertices  dp(t) (t)2fo K1 ak= p(0)?] (1 1 )
P —_— = ———  dk= nfl+—|»,

of the network and, consequently, on the degree distribution. dt P 1 +kp(t)/m P ()

Ill. SCALE-FREE NETWORKS (29)

For heterogenous networks with a diverging second moghose solution is
ment, as in the case of scale-free networks, we have to con-
sider more carefully the solution of E€R0). Let us focus on _ PO dz
generalized uncorrelated scale-free networks in the infinite
size limit, which are completely determined by the normal-
ized degree distribution wherelL,; is the logarithmic integral functiof36]. For small
p(t), we can exploit the asymptotic expansion of the logarith-

— -1y . -1
- n1rg DA FPOD L@ +po), (29

_ 1,
P(k) = (y - Dhm™ k7, (23 mic integral functionL;(z) ~z/In z, z— =, to obtain
where 2<y<3 is the degree exponent) is the minimum 1
degree in the network, and we are approximakiras a con- — ~tiInt. (30)
tinuous variable. The average degree is thls=m(y p(t)
~1/(y-2). For a scale-free network in the limi—, Eq.  That is, in the infinite network size limit, the particle density
(20) can be written as of a scale-free network witly=3 follows the same decay as

the mean-field solution, with a logarithmic correction.

— y-1 e 2=y
dp(t) =_ 2p(t)2(7 1)£n f k dk The conclusion of this analysis is that the particle density
dt (k) m 1+ 2&p(t)/(k) in the A+A— 0 process in a infinite size scale-free network
with degree exponeny follows the asymptotic form at large
= pOF(Ly=2y-1,-(y-Di2(y=2plt), [ 2697 Exponemt ymp o
(24) L

whereF is the Gauss hypergeometric functif86]. There- Pl @ (In A7, (31
fore, the density as a function of time can be implicitly ex- p
pressed in terms of the integral with characteristic exponents

056104-4



DIFFUSION-ANNIHILATION PROCESSES IN COMPLEX. PHYSICAL REVIEW E 71, 056104(2005

U(y-2), 2<y<3, coming empty, and the number of occupied vertices is up-
a(y) = 1 3 (32 datedn—n-2. In both cases, time is becoming updated as
' y=2 t—t+1/n, wheren is the total number of particles at the
beginning of the simulation step. In all the simulations pre-
0, 2<y<3, sented in this section, we set the initial particle dengiy
Blyy=311, vy=3, (33y =05.
0, y> 3.
The results fory>3 are a natural consequence of the lack of A. Homogeneous networks
degree fluctuationg(k?) <) in this kind of scale-free net-

work The class of homogeneous networks refers to networks
orK. with a degree distribution peaked at an average vdduand

The analytical exponents determined above, however, ar . . g .
strongly affected by finite size effects. Indeed, for a power-gecaylng exponentially or faster fae>(k) andk < (k). Typi-

law degree distribution, the largest weight in the sum in EqC@ €xamples of such networks are the Erdos and Renyi
(20) is carried by the largé values. If the network is com- model [38] and the small-wqud model proposed .by Watts
posed of a finite number of verticé§ as always happens in and StrogatZWS) [14]. We will focus on the latter in order

numerical simulations, it has a cutoff or maximum degreeto perform computer simulations. The WS model is defined

k(N), which is usually a function of the network sigg7]. S fo]lows[l4,39]. The start?ng point is.a ring witN verti- .
Thus, there exists a crossover tigedefined by ces, in which every vertex is symmetrically connected to its
2m nearest neighbors. Then, for every vertex, each edge con-
2k.(N)p(t) nected to a clockwise neighbor is rewired to a randomly
T <1, (349 chosen vertex with probabilitp, and preserved with prob-
ability 1—p. This procedure generates a graph with a degree

such that, fot>t. the particle density is so small that we can distribution that decays faster than exponentially for lakge

approximate and average degrék)=2m. We will consider the WS model
p(t) K2 with p=1, that is, in which all edges have been rewired. In
O(t) = =35> K2P(K) = p(t) . (35)  this limit, the degree distribution of the WS network takes
(v K the form[39]

In this time regime, we will observe an effective linear be-
havior for the inverse particle density P(K) = - 39)

1 20® (k=m)!*

PORRC 50
_ P _ Therefore, all its moment&") are finite for any value of,
whose effective slope depends on the network size as and we should expect E@Z) to provide a good approxima-

k—m

ke(N) tion for the dynamics of thé+A— 0 process forp(t) — 0.
K= D KP(K) ~ k(N)37. (37) In order to check this fact, we have carried out large-scale
Kk=m numerical simulations of th&+A— 0 reaction on WS net-

works with p=1 and minimum degreen=3, which corre-

fbrmed on graphs of sizdN=1CP, averaging over 1000
reaction processes over ten different realizations of the ran-
dom network. In Fig. 1 we show the total density Adfpar-
ticles as a function of time. As we can observe, the inverse
particle density follows quite precisely a linear behavior with
time, as predicted in Eq22).

homogeneous networks, i.e., df) is linear int, but now
with a slope that depends on the network dizeThus, ex-
ponents larger than 1, given by E&2), can only be numeri-
cally observed as transients in very large networks.

IV. NUMERICAL SIMULATIONS

As a check for the analytic predictions developed in the
previous sections, we have performed extensive numerical
simulations of the diffusion-annihilation process on top of The Barabési-Alber{BA) graph was introduced as the
different network models, both homogeneous and heterogdirst growing network model capable of producing as an
neous. The simulations are implemented using a sequentiaimerging property a power-law degree distribufid]. This
updating schemg22]. An initial fraction pg of vertices in the model is based on the preferential attachment paradigm, a
networks is randomly chosen and occupied byAgparticle.  rather intuitive mechanism in which new individuals tend to
At time t in the simulation, a vertex is randomly chosen develop more easily connections with already well connected
among then vertices that host aA particle at that time. One individuals. The model is defined as follows. We start from a
of its neighbors is selected also at random. If it is empty, thesmall numbemm, of vertices, and at each time step, a new
particle moves and occupies it. If it contains a particle, this isvertex is introduced, wittm edges that are connected to old
annihilated with the one in the first vertex, both vertices be-verticesi with probability

B. Heterogeneous networks: The Barabasi-Albert model
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1/p® - 1/p,

FIG. 1. Inverse average particle densitft) as a function of
time for the A+A— 0 process in WS networks. The dashed line
corresponds to a behavior d(f) ~t.

(k) = ——,

>k

it

(39)

wherek; is the degree of théh vertex. After iterating this

procedure a large number of times, we obtain a network

composed ofN vertices, minimum degree), and average
degree(k)=2m, with a degree distributio®(k) = 2m°k3 and
almost vanishing degree correlatidrdt]. In the results pre-
sented here we consider the parametgys5 andm=2, cor-

PHYSICAL REVIEW E1, 056104(2009

K [1/p,()-2]

0 | |
2
10

10°
t

FIG. 2. Check of Eq(40) in BA networks. The networks have
sizeN=10C".

function 1/p(t) crosses over to a linear dependeidashed
line), showing the onset of finite size effects. The poor agree-
ment at early times should be attributed to the approximation
in Eg. (20), which is valid only for times larger thaty
=10.

C. Heterogeneous networks: The uncorrelated configuration
model

The construction of uncorrelated scale-free networks with
arbitrary degree exponent is a nontrivial issue. The lack of

responding to an average degrge@=4. We have checked correlations is not a negligible requirement at all, in order to
that numerical simulation results are almost independent ofheck our predictions. Indeed, we expect that the dynamics
the value ofm, for m=2, as predicted by our theoretical has an extremely different behavior when correlations are
formalism? Simulations were performed on networks of size present, as observed in other cage30-32. Traditionally,
N=10° andN=1C, averaging over 1000 runs in ten different scale-free networks with arbitrary degree exponent were gen-
network samples. erated using the configuration modéCM) [26-29, in

A first issue that we have explored in this network is thewhich, starting from a degree sequence extracted according
validity of the quasistationary approximation made to obtainto the desired degree distribution, edges are randomly cre-
Eq. (18). If this approximation is valid, we should observe

1 _ K

is independent ok. We have performed this check in Fig. 2.
As we can observe, the curves collapse quite nicelytfor
larger thatty=10. Therefore, we should expect that the re-
sults obtained from the approximation in E@Q) will be
valid above this characteristic time.

In Fig. 3 we represent the inverse particle density as F
function of time. In this plot we observe that, except for very 1L
early times, the initial time dependence is very accurately g
described by the analytic solution E(29), which can be
approximately described by a linear behavior with a logarith-
mic correction, 1p(t)~tInt (full line). At larger times, the

10° E

(40) 0’k

10°E

1/p,

103§

1/p(0)

T
10°E

10°

FIG. 3. Inverse average particle densift) as a function of
’The valuem=1 is, however, particular in this sense, since it time for theA+A— 0 process in BA networks. The full line is the
yields treelike networks. We defer the study of this case to a futur@nalytic solution Eq(29); the dashed line corresponds to the finite
publication. size behavior 14(t) ~t.

056104-6



DIFFUSION-ANNIHILATION PROCESSES IN COMPLEX. PHYSICAL REVIEW E 71, 056104(2005

107 T T T T T T T T Ty L ) B ) ] B L] I AL

—_

=)
i
|

—_
S
[

Lp(®) - 1/p,
s
|
1/p® - 1/p,

FIG. 4. Inverse average particle densjift) as a function of FIG. 5. Inverse average particle densiit) as a function of
time for theA+A— @ process in uncorrelated scale-free networkstime for theA+A— @ process in uncorrelated scale-free networks
with different degree exponents. The dashed line corresponds to theith degree exponeny=2.5 and different network sizes. Inset:
finite size behavior 1d(t) ~t. slope in the linear regime as a function W4 The good linear

behavior validates the finite size solution in E§6).

ated between vertices, respecting the preassigned degrees. It

has been shown, however, that for scale-free distributionthe following. From Eq(34), we have that the density at the
with diverging second moment, and in the absence of selferossover time scales as

connectionga vertex joined to itselfand multiple connec-

tions (two vertices connected by more than one @dgs plte) ~ k(N)™. (42)
procedure generates in fact degree correlatjds41]. The

origin of this phenomenon can be traced back to the eﬁectghen’ from Eq/(26), we can estimate

of the cutoff or maximum expected degieéN), which must t. ~ ko(N)”2. (42)
scale at most adl'’? in order to allow for a full random
uncorrelated edge assignméag]. That is, the crossover tintg diminishes with decreasing It

The uncorrelated configuration moddlUCM) [43] has  turns out that, even fop=2.5,t. is so small and the range of
been recently proposed in order to solve this question. This ithe transient regime p(t) ~t*v? so limited, that we can-
defined as follows(1) Assign to each vertekin a set ofN  not accurately recover the theoretical exponent. Thus, only
initially disconnected vertices a degriegextracted from the the finite size effects, with their associated linear behavior,
probability distributionP(k) ~k™?, and subject to the con- are apparent. System sizes larger than those available for our
straintsm=<k,<N'2 and =k, even.(2) Construct the net- present computer resources should make visible the cross-
work by randomly connecting the vertices witkk;/2 edges, over phenomena.
respecting the preassigned degrees and avoiding multiple and Finally, we have checked the slope dependence of the
self-connections. Using this algorithm, it is possible to creatdinear behavior given by the finite size effects. According to
scale-free networks whose cutoff scaleskgdN) ~ N2 for Egs. (36) and (37), we should observe, for a fixed degree
any degree exponent, and which are completely uncorre- exponent, a slope that grows with the system size as
lated. The results presented below were obtained from simuk(N)3>"7~N@/2" where we have used the scaling of the
lations performed on networks generated from the UCM alcutoff given by the UCM algorithm. We have analyzed this
gorithm with minimum degreen=2 and sizes ranging from point in Fig. 5. For a degree exponept2.5, we observe
N=10° to N=1C°. Averages were performed over 1000 runsthat the curves for increasing valueshhow a correspond-
in ten different network samples. We restrict ourselves to théngly increasing of the slope in the final linear region. We
casem=2 in order to generate a fully connected networkhave estimated this slope by performing a linear fitting to the
with probability one[28,44]. whole curve(inset in Fig. 5. This slope increases approxi-

In Fig. 4 we plot the inverse particle density from com- mately asN*4, in very good agreement with our theoretical
puter simulations in networks with different degree exponenpredictions.

v. From this plot we observe that, at the initial time regime, It is noteworthy that these finite size effects, so remark-
the growth of this function is faster for smaller valuesyof  able in the simulations presented in this section, are, how-
in agreement with the theoretical prediction H6). At  ever, not evident in the numerical work developed in Ref.
larger times, on the other hand, finite size effects take ovef23]. The reason of this fact could be that the simulations in
and we observe again a linear regifmpare the trend [23] were performed in networks generated with the CM
with the reference dashed line in the figureor y<<3, how-  algorithm. These networks, as we have discussed above, ex-
ever, we cannot compare directly with the full analytic pre-hibit some degree of correlatiog0,41,43, and therefore
diction Eq.(26), as we did for the BA model. The reason is could be outside of the regime of validity of the analytical
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calculations we have presented here. On the other hand, imork size in this dynamical process. For any valueyst 3,

the case ofy=3, both the CM and UCM generate networks we have shown that, at large times, the inverse particle den-
without noticeable correlations and, therefore, one should exsity in a finite network crosses over to a linear behavior, with
pect better agreement between our results and those pra-slope that is an increasing function of the network $ize
sented in Ref[23]. However, in this case, finite size effects i.e., 1/p(t)~NE 2t In order to check our results, we have
manifest themselves as a crossover between a linear functigrerformed extensive numerical simulations on both homoge-
of time with logarithmic corrections and a purely linear func- neous and heterogeneous networks, obtaining a convincing
tion of time. The difference between these two regimes is sevidence for our predictions.

subtle that it comes as no surprise that this crossover phe- An interesting conclusion that can be extracted of the
nomena went unnoticed {23], especially in the absence of present work is the very strong incidence that finite size ef-

a theory to predict it. fects can have on dynamical systems on top of scale-free
networks. While these size effects have been already dis-
V. CONCLUSIONS cussed in the context of epidemic spreadidg], the A+A

— @ process analyzed here provides a further example, in

In this paper we have presented a detailed analytical studyhich analytical results and numerical simulations show a
of the A+A— @ diffusion-annihilation process in complex striking agreement.

networks[23]. For uncorrelated homogeneous networks with
bounded degree fluctuations, we recover a behavior compat-
ible with the standard mean-field solution of the process, that
is, the inverse particle density grows linearly with time, e thank A. Vespignani and F. van Wijland for helpful
1/p(t)~t, with a constant prefactor. In the case of uncorre-comments and discussions. This work has been supported by
lated heterogeneous networks, characterized by a scale-frgge Spanish Ministerio de Educacién y Cien¢EEDER),
degree distribution, we observe instead that, in the infinitainder Projects No. FIS2004-05923-C02-01 and No.
network size limitN—o, the inverse particle density in- FIS2004-05923-C02-02. R.P.-S. acknowledges additional fi-
creases as a power law with time,plt) ~t*¥, with an ex-  nancial support from the Ministerio de Ciencia y Tecnologia
ponent larger than 1 and that depends on the level of heter@Spain, and from the Departament d’Universitats, Recerca i
geneity of the network, i.e.q(y)=1/(y-2) for y<3. For  Societat de la Informacié, Generalitat de Cataluf§pain.

v=3, a linear growth with logarithmic corrections sets in, M. B. acknowledges financial support from the Ministerio de
while for y>3 we recover again the mean-field solution Ciencia y Tecnologia through the Ramén y Cajal program.
typical of homogeneous networks. In the case of scale-fre®l. C. acknowledges financial support from Universitat
networks, we have also analyzed the effects of a finite netPolitécnica de Catalunya.
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